Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Life of Austenitic Stainless Steel in Hydrogen Environments

[+] Author Affiliations
Chris San Marchi, Jonathan A. Zimmerman, Konrad Thürmer

Sandia National Laboratories, Livermore, CA

X. Tang

Swagelok Company, Solon, OH

Samuel J. Kernion

Carpenter Technology Corporation, Reading, PA

Kevin A. Nibur

Hy-Performance Materials Testing LLC, Bend, OR

Paper No. PVP2015-45421, pp. V06BT06A015; 7 pages
  • ASME 2015 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Boston, Massachusetts, USA, July 19–23, 2015
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5700-7
  • Copyright © 2015 by ASME


Gas-handling components for high-pressure gaseous hydrogen (such as in the fuel system of fuel cell electric vehicles) are manufactured almost exclusively from austenitic stainless steels. Relatively few studies, however, have evaluated the fatigue life of this class of steels in hydrogen environments, especially at low temperature. Low temperature is important for two reasons: (1) austenitic stainless steels show an apparent minimum in tensile ductility at temperature near 220K when exposed to hydrogen environments; and (2) the service temperature range for the automotive industry is generally consider to be 233K to 358K (−40°C to +85°C). While the temperature of maximum hydrogen embrittlement from tensile tests is very near the minimum of the service temperature range, it remains unclear if the same trend applies to fatigue life properties. In this paper, we evaluate the effect of hydrogen on fatigue life of strain-hardened Type 316L. The tested alloy features a relatively high nickel content of 12 wt% and high yield strength of 590 MPa. Additionally, reduction of cost and weight of hydrogen-handling components is necessary to enhance the competitiveness of fuel cell vehicle technologies. Cost reductions can be achieved by considering alloys with lower nickel content, while higher strength materials enable lower weight. Simple estimates of cost and weight reductions that can be realized are discussed.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In