0

Full Content is available to subscribers

Subscribe/Learn More  >

Hydrogen Transport and Hydrogen-Assisted Cracking in SUS304 Stainless Steel During Deformation at Low Temperatures

[+] Author Affiliations
Lin Zhang

Zhejiang University of Technology, Hangzhou, China

Bai An, Takashi Iijima

National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Chris San Marchi, Brian Somerday

Sandia National Laboratories, Livermore, CA

Paper No. PVP2015-45211, pp. V06BT06A008; 6 pages
doi:10.1115/PVP2015-45211
From:
  • ASME 2015 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Boston, Massachusetts, USA, July 19–23, 2015
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5700-7
  • Copyright © 2015 by ASME

abstract

The behaviors of hydrogen transport and hydrogen-assisted cracking in hydrogen-precharged SUS304 austenitic stainless steel sheets in a temperature range from 177 to 298 K are investigated by a combined tensile and hydrogen release experiment as well as magnetic force microscopy (MFM) based on atomic force microscopy (AFM). It is observed that the hydrogen embrittlement increases with decreasing temperature, reaches a maximum at around 218 K, and then decreases with further temperature decrease. The hydrogen release rate increases with increasing strain until fracture at room temperature but remains near zero level at and below 218 K except for some small distinct release peaks. The MFM observations reveal that fracture occurs at phase boundaries along slip planes at room temperature and twin boundaries at 218 K. The role of strain-induced martensite in the hydrogen transport and hydrogen embrittlement is discussed.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In