0

Full Content is available to subscribers

Subscribe/Learn More  >

Stress Intensity Factors of a Three-Point Bend Specimen Under Dynamic Loading

[+] Author Affiliations
Yuh J. Chao

Tianjin University, Tianjin, ChinaUniversity of South Carolina, Columbia, SC

Poh-Sang Lam

Savannah River National Laboratory, Aiken, SC

Paper No. PVP2015-45943, pp. V06AT06A028; 8 pages
doi:10.1115/PVP2015-45943
From:
  • ASME 2015 Pressure Vessels and Piping Conference
  • Volume 6A: Materials and Fabrication
  • Boston, Massachusetts, USA, July 19–23, 2015
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5699-4
  • Copyright © 2015 by ASME

abstract

Stress intensity factors for a three-point bend specimen under dynamic loadings are obtained through the displacement fields using digital image correlation (DIC) method. The dynamic loads are generated with a drop weight to impact the specimen while the crack remains stationary in this study. It shows that the stress intensity factor oscillates as a function of time. The experimental details and the comparison with theoretical solutions are presented.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In