Full Content is available to subscribers

Subscribe/Learn More  >

Thermal-Hydraulic Response of the Secondary Side of a PWR Steam Generator With an Internal Structure to a Main Steam Line Break

[+] Author Affiliations
Jong Chull Jo

Korea Institute of Nuclear Safety, Daejon, Korea

Paper No. PVP2015-45092, pp. V004T04A052; 9 pages
  • ASME 2015 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Boston, Massachusetts, USA, July 19–23, 2015
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5697-0
  • Copyright © 2015 by ASME


This study addresses a numerical analysis of the thermal-hydraulic response of the secondary side of a steam generator (SG) model with an internal structure to a main steam line break (MSLB) at a pressurized water reactor (PWR) plant. The analysis model is comprised of the SG upper space where steam occupies and the part of the main steam pipe between the SG outlet nozzle and the broken pipe end upstream of the main steam isolation valve. To investigate the effects of the presence of the SG internal structure on the thermal-hydraulic response to the MSLB, the numerical calculation results for the analysis model having a perforated horizontal plate as the SG internal structure are compared to those obtained for a simple analysis model having no SG internal structure. Both analysis models have the same physical dimensions except for the internal structure. The initial operating conditions for both SG models are identical to those for an actual operating plant. To simplify the analyses, it is assumed that steam is constantly generated from the bottom of the SG secondary side space during the blowdown process.

As the results, it has been found that the pressure wave significantly attenuates as it passes through the perforated internal structure and as time elapses. This leads to reduction in instantaneous hydraulic load on the internal structure including tubing. However, it is seen that the presence of the internal structure does not affect the transient velocities of steam passing through the SG tube bundle during the blowdown, which are 2 to 8 times the velocities during the normal reactor operation as in the case for the empty SG. Consequently, the present findings should be considered for the design of the steam generator to ensure the reactor safety as such elevated high steam velocities can cause fluidelastic instability of tubes which results in high cycle fatigue failure of the tubes.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In