Full Content is available to subscribers

Subscribe/Learn More  >

Phase Lag Model for Fluidelastic Instability in Square Cylinder Arrangement

[+] Author Affiliations
Mustapha Benaouicha, Elisabeth Longatte, Franck Baj

Laboratory for the Mechanics of Ageing Industrial Structures, Clamart, France

Paper No. PVP2015-45840, pp. V004T04A006; 8 pages
  • ASME 2015 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Boston, Massachusetts, USA, July 19–23, 2015
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5697-0
  • Copyright © 2015 by ASME


In this paper, a phase lag model is proposed in order to predict the fluid velocity threshold for fluidelastic dynamic instability of a square cylinder arrangement under cross flow. A theoretical formulation of a total damping, including the added damping in still fluid, the damping due to fluid flow and the damping derived from the phase shift between the fluid force and tube displacement, is given. A function of fluid and structure parameters, such as reduced velocity, pitch ratio and Scruton number, is thus obtained. It is shown that this function, taken as function of the reduced velocity variable, vanishes at the critical reduced velocity from which the fluidelastic dynamic instability of the tube occurs. Obviously, the value of the critical velocity is depending on other fluid-structure parameters. The obtained results are compared to experimental ones and those obtained from other theoretical models.

Copyright © 2015 by ASME
Topics: Cylinders



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In