Full Content is available to subscribers

Subscribe/Learn More  >

A New Methodology for Erosion Prediction Using Eulerian-Eulerian CFD Models

[+] Author Affiliations
Gianandrea V. Messa, Irene Ingrosso, Stefano Malavasi

Politecnico di Milano, Milano, Italy

Paper No. PVP2015-45608, pp. V004T04A003; 10 pages
  • ASME 2015 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Boston, Massachusetts, USA, July 19–23, 2015
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5697-0
  • Copyright © 2015 by ASME


The erosion of a surface caused by the impact of solid particles dragged by a fluid is a serious concern in the oil&gas industry. At present, the erosion prediction is performed using algebraic erosion models which express the volume of eroded material per impact as a function of the mass of the abrasive particles as well as of fluid dynamic parameters (such as the impact velocity and the impact angle of the eroding particle) and properties of the materials involved in the process. The fluid dynamic parameters are, in turn, evaluated using Eulerian-Lagrangian CFD models which interpret the fluid phase as a continuous mean and follow the trajectories of all the particles. However, the huge computational burden makes it difficult, or even precludes, to adopt this approach in many flows of engineering interest. An innovative methodology is proposed for estimating the parameters required as input by the erosion models using computationally cheaper Eulerian-Eulerian CFD models which solve for the average properties of the ensamble of particles. The good results obtained when predicting the erosion caused the by impingement of an abrasive jet against a surface make the application of this methodology to more complex flows very promising.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In