0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Evolution of Heat Transfer Performance During Flow Boiling in a Microchannel

[+] Author Affiliations
Mrinal Jagirdar, Poh Seng Lee

National University of Singapore, Singapore, Singapore

Paper No. ICNMM2015-48300, pp. V001T07A007; 8 pages
doi:10.1115/ICNMM2015-48300
From:
  • ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Heat Transfer Division, Fluids Engineering Division
  • ISBN: 978-0-7918-5687-1
  • Copyright © 2015 by ASME

abstract

There is a dearth of understanding about the underlying mechanisms of heat transfer during various flow boiling regimes prevalent during flow boiling in microchannels. In this paper, high frequency temperature data and flow visualization have been captured simultaneously to understand the heat transfer mechanisms. Experiments were performed on a single microchannel with height, width and length of 0.42 mm, 2.54 mm and 25.4 mm respectively. The working fluid was deionized, de-gassed water. The tested heat flux and mass flux were 28 W/cm2 and 180.1 kg/m2s respectively. The flow boiling regime observed was slug flow. Temperature captured was below the wetted surface and hence Inverse Heat Conduction Problem (IHCP) solution methodology had to be used. Its efficacy was first tested and was found to be reasonably good. Transient wetted surface heat flux, temperature and heat transfer coefficient were calculated using this methodology and were then correlated with the visual data. Depending on the flow boiling phenomena, there were significant variations in heat transfer with time. Several insights into the heat transfer mechanisms have been presented.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In