Full Content is available to subscribers

Subscribe/Learn More  >

Comprehensive Two Fluid Model Simulation of Critical Two-Phase Flow Through Short Tube Orifices

[+] Author Affiliations
Puya Javidmand, Klaus A. Hoffmann

Wichita State University, Wichita, KS

Paper No. ICNMM2015-48047, pp. V001T04A048; 13 pages
  • ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems
  • ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels
  • San Francisco, California, USA, July 6–9, 2015
  • Conference Sponsors: Heat Transfer Division, Fluids Engineering Division
  • ISBN: 978-0-7918-5687-1
  • Copyright © 2015 by ASME


Small-diameter tubes are utilized widely as expansion devices in refrigeration systems. They are employed in either kinds of short-tube orifices or long capillary tubes. Performance of these tubes is reliant upon critical flashing of the two-phase flow that controls the mass flow rate of the refrigeration system resulting in a steep reduction in pressure and temperature. The critical flow condition is approached whenever the mass flow rate increases to an amount whereby the choked-flow phenomenon occurs at the outlet of the tube. Due to their very small tube diameter, the evaporating two-phase flow, and the choked-flow condition, numerical analysis of flow through short-tube orifices is challenging. Accordingly, all available numerical analyses of such flows are performed as one-dimensional and in the majority of them, auxiliary correlations are applied to simplify the solution procedure. Typical approaches include homogeneous flow models and separated flow models, both of which consider the two-phase region in thermal equilibrium. The most comprehensive method for analyzing such flows is the two-fluid model in which there is no assumption of equilibrium between phases. Because of the complicated nature of this model, it has been used in a very limited number of previous investigations. Furthermore, two-phase flow calculations at the entrance and vena contracta region were eliminated. In the current investigation, additional steps utilized to improve the accuracy of computations include the following: (1) applying the most comprehensive two-fluid model including the effect of various two-phase flow patterns and the metastability of liquid phase, and (2) performing a two-phase analysis of the evaporating flow through the entrance and vena contracta regions which involves simulating the region as a converging diverging tube and performing a quasi-one-dimensional solution of governing equations through this region. Results showed more compatibility with experimental data in comparison with those of previous investigations for predicting the critical flow condition of common refrigerants HFC-134a and HFC-410a through short-tube orifices and long capillary tubes.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In