Full Content is available to subscribers

Subscribe/Learn More  >

Wind Flow Over a Complex Terrain in Nygårdsfjell, Norway

[+] Author Affiliations
Muhammad Bilal, Yngve Birkelund

The Arctic University of Norway, Tromsø, Norway

Narendran Sridhar, Guillermo Araya, Sivapathas Parameswaran

Texas Tech University, Lubbock, TX

Paper No. ES2015-49188, pp. V002T19A005; 9 pages
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME


The understanding of atmospheric flows is crucial in the analysis of dispersion of a contaminant or pollutant, wind energy and air-quality assessment to name a few. Additionally, the effects of complex terrain and associated orographic forcing are crucial in wind energy production. Furthermore, the use of the Reynolds-averaged Navier-Stokes (RANS) equations in the analysis of complex terrain is still considered the “workhorse” since millions of mesh points are required to accurately capture the details of the surface. On the other hand, solving the same problem by means of the instantaneous governing equations of the flow (i.e., in a suite of DNS or LES) would imply almost prohibitive computational resources. In this study, numerical predictions of atmospheric boundary layers are performed over a complex topography located in Nygårdsfjell, Norway. The Nygårdsfjell wind farm is located in a valley at approximately 420 meters above sea level surrounded by mountains in the north and south near the Swedish border. Majority of the winds are believed to be originated from Torneträsk lake in the east which is covered with ice during the winter time. The air closest to the surface on surrounding mountains gets colder and denser. The air then slides down the hill and accumulates over the lake. Later, the air spills out westward towards Ofotfjord through the broader channel that directs and transforms it into highly accelerated winds.

Consequently, one of the objectives of the present article is to study the influence of local terrain on shaping these winds over the wind farm. It is worth mentioning that we are not considering any wind turbine model in the present investigation, being the main purpose to understand the influence of the local surface topography and roughness on the wind flow. Nevertheless, future research will include modeling the presence of a wind turbine and will be published elsewhere. The governing equations of the flow are solved by using a RANS approach and by considering three different two-equation turbulence models: k-omega (k–ω), k-epsilon (k–ε) and shear stress transport (SST). Furthermore, the real topographical characteristics of the terrain have been modeled by extracting the required area from the larger digital elevation model (DEM) spanning over 100 km square. The geometry is then extruded using Rhino and meshed in ANSYS Fluent. The terrain dimensions are approximately 2000×1000 meter square.

Copyright © 2015 by ASME
Topics: Flow (Dynamics) , Wind



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In