Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of the Wind Turbine Designs for Areas With Low Wind Speeds

[+] Author Affiliations
Mohammed S. Mayeed, Adeel Khalid

Kennesaw State University, Marietta, GA

Paper No. ES2015-49052, pp. V002T19A002; 9 pages
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME


Wind energy has been identified as an important source of renewable energy. In this study, several wind turbine designs have been analyzed and optimized designs have been proposed for low wind speed areas around the world mainly for domestic energy consumption. The wind speed range of 4–12 mph is considered, which is selected based on the average wind speeds in the Atlanta, GA and surrounding areas. These areas have relatively low average wind speeds compared to various other parts of the United States. Traditionally wind energy utilization is limited to areas with higher wind speeds. In reality a lot of areas in the world have low average wind speeds and demand high energy consumption. In most cases, wind turbines are installed in remote offshore or away from habitat high wind locations, causing heavy investment in installation and maintenance, and loss of energy transfer over long distance. A few more advantages of small scale wind turbines include reduced visibility, less noise and reduced detrimental environmental effects such as killing of birds, when compared to traditional large turbines. With the latest development in wind turbine technology it is now possible to employ small scale wind turbines that have much smaller foot print and can generate enough energy for small businesses or residential applications. The low speed wind turbines are typically located near residential areas, and are much smaller in sizes compared to the large out of habitat wind turbines. In this study, several designs of vertical and horizontal axes wind turbines are modeled using SolidWorks e.g. no-airfoil theme, airfoil blade, Savonius rotor etc. Virtual aerodynamic analysis is performed using SolidWorks Flow simulation software, and then optimization of the designs is performed based on maximizing the starting rotational torque and ultimate power generation capacity. From flow simulations, forces on the wind turbine blades and structures are calculated, and used in subsequent stress analysis to confirm structural integrity. Critical insight into low wind speed turbines is obtained using various configurations, and optimized designs have been proposed. The study will help in the practical and effective utilization of wind energy for the areas around the globe having low average wind speeds.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In