0

Full Content is available to subscribers

Subscribe/Learn More  >

Transient Turbulent Natural Convection in Vertical Tubes for Indirect Thermal Energy Storage

[+] Author Affiliations
Reza Baghaei Lakeh

California State Polytechnic University, Pomona, CA

H. Pirouz Kavehpour, Richard E. Wirz, Adrienne S. Lavine

University of California Los Angeles, Los Angeles, CA

Paper No. ES2015-49092, pp. V002T18A003; 9 pages
doi:10.1115/ES2015-49092
From:
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME

abstract

In this study, turbulent natural convection heat transfer during the charge cycle of a Thermal Energy Storage system was studied computationally and analytically. The storage fluids were supercritical CO2 and liquid toluene which are stored in vertical and sealed storage tubes. A computational model was developed and validated to study turbulent natural convection during the charge cycle. The results of this study show that the aspect ratio of the storage tube (L/D) has an important effect on the heat transfer characteristics. A conceptual model was developed that views the thermal storage process as a hot boundary layer that rises along the tube wall and falls in the center to replace the cold fluid in the core. This model shows that dimensionless mean temperature of the storage fluid and average Nusselt number are functions of a Buoyancy-Fourier number.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In