0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Different Natural Ventilation Strategies for an Educational Building on the Warm-Humid Climate of Guayaquil, Ecuador

[+] Author Affiliations
R. David Beltrán, Juan Kastillo, Isabel Miño-Rodríguez

National Institute for Energy Efficiency and Renewable Energies, Quito, Ecuador

Carlos Naranjo-Mendoza, Carlos Ávila

National Polytechnic School, Quito, Ecuador

Paper No. ES2015-49701, pp. V002T17A006; 7 pages
doi:10.1115/ES2015-49701
From:
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME

abstract

Natural ventilation has been studied as an effective strategy in order to reduce energy consumption without compromising occupant’s hygrothermal comfort in warm-humid climates. However, the main concern about the current state of art in the use of Building Energy Simulation (BES) as an approach to natural ventilation is the definition of input data which usually do not represent the real state of the buildings in the studied region. Within this context, the main contribution of this research is to propose a methodology through which the real state of buildings can be evaluated. By this analysis, valid input parameters was found to exploit the capabilities of BES and CFD simulations to fulfill the main objective of this study, which is to assess the impact of natural ventilation strategies in the energy consumption of HVAC systems and occupants hygrothermal comfort. Four natural ventilation strategies were evaluated: single sided ventilation, cross ventilation, solar chimney and double façade. The results show that the exclusive use of natural ventilation is ineffective to ensure hygrothermal comfort in a building with high thermal loads in a warm-humid climate like Guayaquil. However, by using a hybrid system (natural ventilation/dehumidification and cooling) cooling energy consumption can be reduced in up to 10.6% without compromising occupant’s hygrothermal comfort. Due to the promising results regarding energy savings, further research will aim to evaluate the impact of other passive strategies in energy consumption.

Copyright © 2015 by ASME
Topics: Ventilation , Climate

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In