0

Full Content is available to subscribers

Subscribe/Learn More  >

Response Surface Based Optimization of Solar Collector Integrated With an Ammonia-Water Combined Power/Cooling Cycle Supported by Exergy Analysis

[+] Author Affiliations
Jesús M. García, Marco E. Sanjuan M., Ricardo Vasquez Padilla

Universidad del Norte, Barranquilla, Colombia

Paper No. ES2015-49843, pp. V002T15A010; 12 pages
doi:10.1115/ES2015-49843
From:
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME

abstract

Finding optimal operating conditions of solar-based power and cooling systems is always a challenge. Performance of these systems is highly dependent on several important parameters, which not only impact the long-term efficiency but also its technical and economic feasibility. This paper studies the operation/configuration problem of an ammonia-water power and cooling cycle using an exergetic analysis. Thermodynamic performance of the combined cycle was addressed by using analysis of variance and multiple linear regression analysis. Modeling was done in Matlab®, using Refprop 9.0 to calculate the thermodynamic properties of the ammonia-water mixture. Convergence issues were observed on the thermodynamic properties estimation carried out by Refprop when the stream had high ammonia mass fraction. To solve this issue an averaging algorithm was implemented online to estimate such properties using pure ammonia data and high, but stable, ammonia concentration data. After this implementation, small differences between current and reference model were seen.

Optimum operating conditions were obtained using response surface technique. The response variable used was the ratio between exergetic efficiency and exergy destruction. Results showed that the response variable is mainly influenced by the ammonia concentration, pressure ratio, turbine efficiency and temperature gradient in the heat exchanger. Finally integration of the power/cooling cycle with a solar field was performed using two types of concentrated solar collectors: Linear Fresnel Collector (LFC) and Parabolic Trough Collector (PTC). The analysis showed that LFC technology can be a viable alternative for small scale applications combined with power/cooling systems.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In