Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation Study for the Performance of a Large Solar Hot Water System With Horizontal Storage Tank

[+] Author Affiliations
Ru Yang, Geng-Yi Lin

National Sun Yat-Sen University, Kaohsiung, Taiwan

Paper No. ES2015-49828, pp. V002T15A009; 6 pages
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME


A large solar hot water system can be utilized to provide driving energy for heating system, heat-driven cooling system, as well as to provide hot water. This research addresses the effects of the storage tank design parameters on the performance of a large-scale solar hot water system with a horizontal storage tank. Most literatures only considered the stratification performance of the thermal storage tank itself instead of considering the overall system performance. Also, there is lack of experimental research data available for the design purpose. Therefore, this study employs a numerical simulation technique to study the design parameters effect of a horizontal thermal storage tank on the performance of a large-scale solar hot water system. In this study, the ANSYS-CFX program is employed to calculate the flow and temperature distributions inside horizontal thermal storage tank. Then the inlets and outlets of the tank are combined with the TRNSYS program to simulate the entire system performance under the weather of three representative cities of Taiwan, (Taipei, Taichung and, Kaohsiung). The results of the present study indicate that the vertical stratification baffles in the tank have important effects on system performance improvement. Quantitative increase of solar fraction of the total load is obtained. The comparison with the system with vertical storage tank is provided. The results of the present study can provide important reference for the large solar hot water system design in improving system efficiency.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In