0

Full Content is available to subscribers

Subscribe/Learn More  >

Study of the Lemon Drying Process Using a Solar Dryer

[+] Author Affiliations
Hilario Terres, Sandra Chavez, Raymundo Lopez, Arturo Lizardi, Araceli Lara, Juan R. Morales

UAM-Azcapotzalco, Azcapotzalco, Distrito Federal, México

Paper No. ES2015-49696, pp. V002T15A007; 6 pages
doi:10.1115/ES2015-49696
From:
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME

abstract

A complete study for a solar dryer is shown. In this work the lemon drying process is considered. Also, results for temperature distribution, currents lines velocities and density distribution are presented inside of the dryer chamber. Curves for dried are obtained when the lost mass of the lemon is measured. For this purpose, a digital balance is used and during several intervals of time the measures are done. A Compact Field point device of National Instrument is used to measure temperatures inside of the chamber in the dryer. Thermocouples k-type were placed in different points. By acquisition data, the values of temperature were measured for the test. By means of software (ANSYS) is discretized the inner zone and using the temperatures as boundary conditions. Solving the system defined for the equations according to the mesh defined, temperature, velocities and densities are determined. The results allowing to identify what is the behavior inside of the dryer and how the drying process happens. This way to study the drying process can be useful when the behavior inside of the chamber wants to be evaluated. In addition, this work can be useful in the design of solar dryers because allows to know how the trays can be placed to take advantage in the best way the solar energy in solar dryers.

Copyright © 2015 by ASME
Topics: Drying , Solar energy

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In