Full Content is available to subscribers

Subscribe/Learn More  >

CFD Study on Supersonic Ejectors Used for Suction of Two Different Gases

[+] Author Affiliations
Mohsen Tavakol, Maziar Shafaee

University of Tehran, Tehran, Iran

Paper No. ES2015-49577, pp. V002T15A005; 7 pages
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME


In ejector refrigeration cycles, ejector working fluids include various refrigerants with different properties. In some cases, ejector works with mixture of two different refrigerants; that each refrigerant have distinct properties. The purpose of this paper is to evaluate the performance of an ejector used for suction of a mixture of air and water vapor. In this regard, the ejector performance was numerically studied under the operating condition that a mixture of air and steam with variable mass fractions, were sucked into the ejector. With the help of numerical simulation, various conditions for two perfect gas streams of air and water vapor were investigated. Initially, the numerical simulation was carried out for the case that pure water vapor was considered as the working fluid of ejector. After validation of initial case with experimental data, numerical method was expanded for a specific case that, water vapor was considered as the working fluid of motive flow and a mixture of air and water vapor was considered for suction flow. Numerical simulations were done for different mass fraction of air and water vapor for suction flow mixture. Results indicated that, variations of the mass fraction of air in suction flow, leads to obvious changes in ejector performance. Also, it was observed that the increment of suction flow pressure, leads to increment of the ejector performance sensitivity to variations of suction flow mass fraction.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In