Full Content is available to subscribers

Subscribe/Learn More  >

Solar-Driven Sorption Chillers for Residential Space Cooling: A Review of Recent Developments and Possible Applications in Canada

[+] Author Affiliations
Daniel Bowie, Cynthia A. Cruickshank

Carleton University, Ottawa, ON, Canada

Paper No. ES2015-49292, pp. V002T15A004; 8 pages
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME


Energy use for space cooling has increased by 156% from 1990 to 2010 in the Canadian residential sector. In many parts of the country, the increasing use of electrically driven air-conditioners has begun to shift the peak load on the electricity grid from the coldest days of winter to the hottest days of summer. Many of Canada’s major electric utilities providers rely on fossil fuels to generate the additional capacity needed to meet the peak demand, resulting in significant greenhouse gas emissions. Solar-driven sorption chillers remain one of the possible solutions for shaving the peak loads experienced by the electricity grid.

This paper presents a review of the recent developments in the research of adsorption and absorption chillers, as well as a comparison of the two technologies based on the latest published experimental results found in the literature. Adsorption chillers continue to evolve in their design, including the use of new consolidated and composite adsorbents, the integration of coated adsorbers into internal heat exchangers, and newly developed advanced cycles for heat and mass recovery. While the physical design of adsorption chillers continues to be advanced, the development of absorption chillers for solar cooling applications has largely been focused on optimizing the system as a whole through improved control strategies and the implementation of newly developed high performance solar collectors.

Finally, the paper aims to assess the current state of development of solar-driven sorption chillers to provide insight into their applicability in the Canadian residential sector, as well as the remaining challenges facing this technology.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In