Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Heat Transfer in a 3D Cavity-Receiver

[+] Author Affiliations
Parthasarathy Pandi, Patrick Le Clercq

DLR, German Aerospace Center, Stuttgart, Germany

Paper No. ES2015-49355, pp. V002T14A003; 10 pages
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME


The unsteady 3D fluid flow coupled to radiative, convective, and conductive heat transfers are computed within a cavity-receiver that was successfully tested experimentally. A Monte-Carlo radiation model is used in the fluid regions of the reactor with source terms outside the cavity’s window to account for the concentrated radiative power input. Darcy’s law for the viscous regime and the Forchheimer’s term for the inertial regime are used in the momentum equation to account for the pressure drop within the porous region (RPC).

Two separate energy equations for the solid and for the fluid regions of the porous domain are solved in order to capture the non-equilibrium effects in that region. Rosseland diffusion approximation is used in the solid regions of the RPC domain. The material properties and boundary conditions were taken from published experimental measurements. The simulation results are compared to the measurement data collected during the pre-heating and the ceria reduction phases, which sum up to four different radiative power inputs. Results of the comparison are very good and constitute the verification that the numerical methods, physical sub-process models and material properties are adequately selected and implemented. An analysis regarding the heat balance, the recirculating flow and, the effect of dual-scale porosity is also presented.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In