0

Full Content is available to subscribers

Subscribe/Learn More  >

New Design of a Bimetallic Finned Tube for the Use in Latent Heat Thermal Energy Storage Units

[+] Author Affiliations
Georg Urschitz, Jens Brier, Heimo Walter, Roland Mertz, Friedrich Bleicher, Markus Haider

Vienna University of Technology, Vienna, Austria

Paper No. ES2015-49143, pp. V002T13A002; 13 pages
doi:10.1115/ES2015-49143
From:
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5685-7
  • Copyright © 2015 by ASME

abstract

The use of finned tubes as enhancement method to increase the heat flow rate into a phase change material, which has in many cases a low thermal conductivity, is a common method. A highly efficient and easy-to-assemble solution for finned heat exchanger tubes is a key component for innovative thermal energy storage systems which play a key-role in electricity production and industrial heat management.

In the present article the results of the investigation for different designs of bimetallic heat exchanger tubes is presented. These tube designs are developed for the use in latent heat thermal energy storage systems (LHTES) at a medium temperature range. For the use in latent heat thermal energy storage systems, the probably high pressure of the heat transfer medium and the high temperature differences between the operating temperature and the ambient temperature are challenging. Therefore, the bimetallic finned heat exchanger tube consists of a steel tube, where the heat transfer fluid flows, and an aluminum tube with longitudinal fins, which should improve the heat transfer to the phase change material. Due to different thermal expansion coefficients, displacements of the tubes are given. To guarantee a high heat transfer rate between the two connected tubes the contact between aluminum and steel plays an important role.

In the present study 4 prototypes (including the new design) were designed, analyzed and compared on the connection strength. Long-term tests for simulating the application in a LHTES were done to determine the creep rupture properties of the compositions. All prototypes were tested successfully; the new design is convinced in many aspects of that challenge and is submitted to the Austrian patent office. Main advantages of the new design are the simple production and assembling compared to other analyzed prototypes. Furthermore, the new design shows the best results under the analyzed operation conditions and the layout of the geometry has a high optimization potential in terms of stresses.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In