0

Full Content is available to subscribers

Subscribe/Learn More  >

Amino-Functionalized Silica Materials for Carbon Dioxide Capture

[+] Author Affiliations
Hanna Abbo, Marvin Piet, Salam Titinchi

University of the Western Cape, Cape Town, South Africa

Wilhelm Schwieger

University of Erlangen-Nürnberg, Erlangen, Germany

Olav Bolland

Norwegian University of Science and Technology, Trondheim, Norway

Paper No. ES2015-49743, pp. V001T10A004; 5 pages
doi:10.1115/ES2015-49743
From:
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5684-0
  • Copyright © 2015 by ASME

abstract

Amine-functionalized mesoporous silica has attracted much attention as a promising chemical sorbent for capturing carbon dioxide. It has the combination of several features viz., high adsorption capacity, high selectivity toward CO2, fast kinetics, mild conditions for desorption and should be stable under operating conditions.

In this study, a chemical grafting route has been developed to synthesize mesoporous adsorbents with amines functionalization for CO2 capture. The initial silylation step was achieved by grafting of different silane linkers (3-aminopropyl)-trimethoxysilane (APS) and 3-chloropropyl)-trimethoxysilane (CPS) via direct condensation and hydrolysis reaction. After silylation the CPS-supports was reacted with tris(2-aminoethyl)amine (TREN) to introduce the amine group to increase the adsorptive capabilities for these sorbents. The synthesized sorbents were characterized by N2 adsorption/desorption, XRD, FTIR and HR-SEM. The adsorption capacities of the modified solid sorbents show a significant enhancement in their adsorption capacity by 3–4 times higher than that of the parent materials which indicate the affirmative impact of amines for CO2 adsorption after grafting.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In