0

Full Content is available to subscribers

Subscribe/Learn More  >

A Computational Study of In-Cylinder NOx Reduction Strategies for a Compression-Ignition Engine Fueled With Diesel/Hydrogen Mixtures

[+] Author Affiliations
Hassan A. Khairallah, Umit O. Koylu

Missouri University of Science and Technology, Rolla, MO

Paper No. ES2015-49098, pp. V001T08A001; 10 pages
doi:10.1115/ES2015-49098
From:
  • ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division, Solar Energy Division
  • ISBN: 978-0-7918-5684-0
  • Copyright © 2015 by ASME

abstract

Considerable efforts have been made to introduce alternative fuels for use in conventional diesel and gasoline engines. There is significant interest in adding hydrogen to a diesel engine to reduce emissions and improve efficiency. However, the main challenge associated with the use of hydrogen in diesel engines is high nitrogen oxide (NOX) emissions. In the present study, a reduced chemical kinetics mechanism, consisting of 52 reactions and 29 chemical species for n-heptane fuel combustion, was incorporated with detailed chemical kinetics consisting of 29 reactions for hydrogen as well as additional nitrogen oxidation. This reaction mechanism was coupled with 3-D advanced CFD software to investigate the performance and emission characteristics of a diesel-hydrogen dual-fuel engine. Computational results showed good agreements with the experimental results for brake thermal efficiency, CO2, CO, and NOX emissions. The model was then employed to examine the effects of exhaust gas recirculation (EGR) and N2 dilution on NOX emissions. The computational results quantified the reduction in NOX emissions with EGR and N2 dilution, and a more remarkable reduction was found with 30% N2 dilution. However, in terms of the N2 dilution, a general decreasing trend was observed for both NOX and CO2 emissions, while CO emissions increased. In relation to the EGR, the NOX emissions decreased while CO2 and CO emissions significantly increased. Additionally, the results showed that the indicated mean effective pressure (IMEP) and indicated power decreased as the N2 dilution increased. The same trend was observed for the EGR but the reduction was less compared to that of the N2 dilution.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In