Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigations of the Effect of Scheme Exit Height and Double Row Injection on the Film Cooling Performance of a Micro Tangential Jet Scheme: Part II — Suction Side

[+] Author Affiliations
O. Hassan

Assiut University, Assiut, Egypt

I. Hassan

Texas A & M University at Qatar, Doha, Qatar

Paper No. POWER2015-49132, pp. V001T13A004; 9 pages
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME


This paper presents experimental investigations of the effect of scheme exit height and double jet injection on the film cooling performance of a Micro-Tangential-Jet (MTJ) scheme on the suction side of a gas turbine vane using the transient Thermochromic Liquid Crystal (TLC) technique. In part I of the present paper the investigations over the pressure side are presented. The MTJ scheme is a micro-shaped scheme designed so that the micro-sized secondary jet is supplied tangentially to the vane surface. In order to investigate the effect of scheme exit height, one row of the MTJ scheme with exit height of 1.5 hole diameters was investigated and compared with the case of 1.0 hole diameter scheme exit height. Meanwhile, to investigate the effect of double injection, one row of the MTJ scheme in staggered arrangement with one row of fan-shaped scheme was investigated. The investigations were conducted at a blowing ratio, calculated based on the scheme exit area, ranging from 0.25 to 0.625. The average density ratio during the investigations was 0.93, and the Reynolds Number was 1.4E+5, based on the free stream velocity and the main duct hydraulic diameter. The pitch to diameter ratio of the cooling holes is 6.5, and the turbulence intensity during all investigations was 8.5%. The increase in the MTJ scheme exit height did not result in significant change in the Mach number distribution. Moreover, increasing the scheme exit height resulted in enhanced effectiveness performance. The enhanced effectiveness was accompanied with Heat Transfer Coefficient (HTC) ratio augmentation as well. As a result, a reduction in the Net Heat Flux Reduction (NHFR) accompanied increasing the scheme exit height from 1.0 to 1.5 hole diameters. Besides, adding a row of shaped schemes in front of the MTJ scheme result in significant effectiveness reduction, compared to the case of single row injection. The latter was attributed to the presence of the shaped scheme inclination angle that result in enhanced secondary stream loss due to the perpendicular momentum component to the vane surface accompanying the shaped scheme secondary jet.

Copyright © 2015 by ASME
Topics: Suction , Film cooling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In