Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of a Three-Dimensional Laminar Mixed Convection Flows in Lid-Driven Cavity for Very Small Richardson Numbers

[+] Author Affiliations
M. M. Abo Elazm, A. I. Shahata

Arab AASTMT-Academy for Science, Technology and Maritime Transport, Alexandria, Egypt

A. F. Elsafty

AUM-American University of The Middle East, Egaila, Kuwait

M. A. Teamah

Alexandria University, Alexandria, Egypt

Paper No. POWER2015-49575, pp. V001T12A007; 10 pages
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME


Laminar mixed convection in a three-dimensional lid driven cavity is numerically investigated. The top lid of the cavity is moving rightwards with a constant speed at a cold temperature. The bottom wall is maintained at an isothermal hot temperature, while the other vertical walls of the cavity are assumed to be insulated. In this study the mass diffusion was not taken into account and the fluid used was air. The flow and heat transfer behavior is studied for various Richardson number ranging from 5 × 10−5 to 3 × 10−4 at a fixed Prandtl number of 0.71 through analyzing the local Nusselt number distribution at different sections inside the cavity. Lewis number Le is assumed to be unity and the buoyancy ratio parameter N is equal to zero. Computations were done using an in-house code based on a finite volume method. The results showed a good agreement with previous two dimensional studies, while the three dimensional study gives different results at different sections inside the cavity. It is observed that, the average Nusselt number “Av Nu” on top and bottom surfaces decreases for all sections inside the cavity with increasing Richardson number. A correlation was formulated for each section on both walls for “Av Nu” as a function of “Ri” with a maximum error of 7.3%.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In