Full Content is available to subscribers

Subscribe/Learn More  >

A Study of Aerodynamics Force Evaluation of Horizontal Axis Wind Turbine (HAWT) Blade Using 2D and 3D Comparison

[+] Author Affiliations
Nazia Binte Munir, Kyoungsoo Lee, Ziaul Huque, Raghava R. Kommalapati

Prairie View A&M University, Prairie View, TX

Paper No. POWER2015-49222, pp. V001T11A005; 10 pages
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME


The main purpose of the paper is to use Computational Fluid Dynamics (CFD) in 3-D analysis of aerodynamic forces of a Horizontal Axis Wind Turbine (HAWT) blade and compare the 3-D results with the 2-D experimental results. The National Renewable Energy Laboratory (NREL) Phase VI wind blade profile is used as a model for the analysis. The results are compared with the experimental data obtained by NREL at NASA Ames Research Center for the NREL Phase VI wind turbine blade. The aerodynamic forces are evaluated using 3-D Computational Fluid Dynamics (CFD) simulation. The commercial ANSYS CFX and parameterized 3-D CAD model of NREL Phase VI are used for the analysis. The Shear Stress Transport (SST) Gamma-Theta turbulence model and 0-degree yaw angle condition are adopted for CFD analysis. For the case study seven varying wind speeds (5 m/s, 7 m/s, 10 m/s, 13 m/s, 15 m/s, 20 m/s, 25 m/s) with constant blade rotational speed (72 rpm) are considered. To evaluate the 3-D aerodynamic effect sectional pressure coefficient (Cp) and integrated forces about primary axis such as normal, tangential, thrust and torque are evaluated for each of the seven wind speed cases and compared with the NREL experimental values. The numerical difference of values on wind blade surface between this study and 3-D results of NREL wind tunnel test are found negligible. The paper represents an important comparison between the 3-D lift & drag coefficient with the NREL 2-D experimental data. The results shows that though the current study is in good agreement with NREL 3-D experimental values there is large deviation between the NREL 2-D experimental data and current 3-D study which suggests that in case of 3-D analysis of aerodynamic force of blade surface it is better to use NREL 3-D values instead of 2-D experimental values.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In