Full Content is available to subscribers

Subscribe/Learn More  >

Thermogalvanic Waste Heat Recovery System in Automobiles

[+] Author Affiliations
Andrey Gunawan, Nicholas W. Fette, Patrick E. Phelan

Arizona State University, Tempe, AZ

Paper No. POWER2015-49094, pp. V001T11A002; 8 pages
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME


Recovering waste heat from automobiles remains an inviting subject for research. Solid-state thermoelectric generators (TEGs) have been widely investigated for this purpose, but their practical application remains challenging. An alternative to TEGs are thermogalvanic cells. Temperature difference between hot and cold electrodes creates a potential difference. Once connected to a load, electrical current and power are delivered, converting heat into electricity. In this work, we investigate the feasibility of incorporating such systems into automobiles. We carry out the experiments under real-world conditions. A climate-controlled wind tunnel is built to provide equivalent conditions to the ambient air stream under the car. The demonstrated system achieved a power density on the order of mW m−2. We compare the power generated to those of TEGs currently tested by GM, Honda, BMW and Ford. Further, a simple economic estimation is calculated to assess the $ per Watt cost of future practical thermogalvanic waste heat recovery system.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In