Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of CO2 Capture From Power-Plant Flue Gas Using the Membrane Gas Absorption (MGA) Method

[+] Author Affiliations
Zhien Zhang, Yunfei Yan, Li Zhang, Yanrong Chen

Chongqing University, Chongqing, China

Junlei Wang

Zhengzhou University, Zhengzhou, China

Shunxiang Ju

China United Engineering Corp., Hangzhou, China

Paper No. POWER2015-49026, pp. V001T11A001; 8 pages
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME


Currently membrane gas absorption (MGA) is a novel approach for gas separation. In the present work, a wide-ranging 2D mathematical model for CO2 absorption from the N2/CO2 mixture is proposed. Single solvents [H2O, ethylenediamine (EDA), diethanolamine (DEA), monoethanolamine (MEA), piperazine (PZ)] and blended solvents [DEA/PZ] were used as the absorbents. The non-wetting mode for the membrane contactor was considered in the calculations. The effects of gas concentration and velocity, and liquid concentration and velocity on CO2 removal were observed. The simulation results were verified with the experimental data showing a good agreement. The modeling results indicate that gas concentration and velocity have a negative effect on the capture process, while liquid concentration and velocity enhance CO2 capture. Also, it is noted that PZ has the best absorption performance than other single absorbents. The chemical solvents are much better than the physical solvent for the absorption of CO2. For mixed absorbents based on amine solutions, the CO2 removal efficiency could be about 20% higher than that of the single solutions. Thus, this model could provide the optimum operating conditions for acid gas absorption in the hollow fiber membrane module. It is also proved that the MGA approach exhibits a good potential in power-plant waste gas purification.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In