Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Boiler Design for High-Sodium Coal in Power Generation

[+] Author Affiliations
Song Wu, Wengang Bai, Chunli Tang, Xiaowen Tan, Chang’an Wang, Defu Che

Xi’an Jiaotong University, Xi’an, Shaanxi, China

Paper No. POWER2015-49167, pp. V001T10A001; 9 pages
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME


Considering the severe fouling of high temperature convection pass in the boilers using high-sodium coals, a novel boiler design with a furnace exit gas temperature (FEGT) below 800 °C was proposed. The design was evaluated in different kinds of boilers with various capacities by examining thermal system arrangement, heat transfer, ignition and combustion, and steel consumption. The results indicate that, more radiation heating surface should be used in the thermal system arrangement of the novel boiler besides the volume-enlarged furnace. A marked decrease in the converted coefficient of radiation heat transfer is found in a volume-enlarged furnace due to the reduction in the average temperature of the flame. Moreover, the volume-enlarged furnace can adversely affect ignition and combustion. The cyclone-fired boiler is considered to be the most appropriate application for the novel design, for its combustion and heat transfer in furnace are carried out in divided chambers. A comparison of steel consumption demonstrates the expense of the novel boiler is approximately increased by 10% relative to the conventional one. In addition, an improved application with flue gas recirculation is described in detail, owing to its advantages of controlling FEGT and maintaining the level of convection heat transfer capability of the boiler.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In