0

Full Content is available to subscribers

Subscribe/Learn More  >

Statistical Exergy-Based Analysis of a Steam Power Plant for Concept Verification and Plant Optimization

[+] Author Affiliations
Sari S. Mira, John H. Doty

University of Dayton, Dayton, OH

Paper No. POWER2015-49358, pp. V001T07A002; 11 pages
doi:10.1115/POWER2015-49358
From:
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME

abstract

In this statistical exergy study of a conventional power plant, the concept of statistical exergy analysis as an alternative to common engineering approaches is examined. The statistical aspect is drawn from conducting Analysis of Variance (ANOVA) factorial design on the components of a proposed system. The exergy aspect comes in the extension of the typical energy analysis on engineering systems to include the limitations on the system imposed by the second law of thermodynamics.

To test this approach, a steam power plant discussed in an example exercise in Cengel and Boles’ 5th Edition Thermodynamics textbook was used as the subject of analysis. Effects of three input parameters on 13 responses were closely examined.

While using only 8 data points, the analysis still showed highly reliable and predictable results with square of residuals (R2) values of almost 100%. Predicted R2 values ranged between 88% and 99% with one outlier of 14.36%, depending on the input parameters.

Derived from the results, a new plant design concept was proposed and analyzed. This design eliminated all theoretically unnecessary drivers of exergy destruction in the plant. It also utilized the force of gravity to achieve the desired power output. The design showed an increase of 3.85% to 18% in kilowatts of work output and 5% to 7% in first and second law efficiencies. In this case, the derived design was shown to be impractical due to difficult maintenance as well as the difficulty in reaching the required pressures without a pump. However, this method of statistical exergy analysis is still valuable, as practicality of application will vary from one proposed system to another.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In