Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Heavy Fuel Oil Combustion Characteristics and NOx Emissions in Calciner in Cement Industry

[+] Author Affiliations
Hisham Aboelsaod, Essam E. Khalil

Cairo University, Cairo, Egypt

Paper No. POWER2015-49569, pp. V001T03A014; 10 pages
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME


The aim of the present study is to numerically investigate the combustion characteristics of Heavy Fuel Oil (HFO) and NOx emissions inside a calciner used in cement industry. The calciner is a furnace placed before the rotary Kiln its main objectives are the reduction of CO2 emissions and air pollutions while enhancing the cement quality through separating the calcination and clinkering processes. In order to conduct the present investigations the calciner at CEMEX Egypt Cement Company was considered and real dimensions and operating conditions were applied. The combustion model was based on the conserved scalar (mixture fraction) and prescribed Probability Density Function (PDF) approach. The (RNG) k-ε turbulence model has been used. The HFO droplet trajectories were predicted by solving the momentum equations for the droplets using Lagrangian treatment. The radiation heat transfer equation was solved using P1 method. The formation of thermal NOx from molecular nitrogen was modeled according to the extended Zeldovich mechanism. The effects of varying the burner’s swirl number and viscosity grade on the combustion performance of HFO and the resulting NOx emissions were considered. The burner’s swirl number influences the mixing rate of air and fuel. A small swirl number ≤ 0.6 is not desired as it elongates the flame; increases flue gases temperatures and increases the NOx emissions inside the calciner. A swirl number ≥ 0.6 is found optimal for good combustion characteristics and NOx emissions concentration. Meanwhile, it was found that the HFO viscosity has a significant effect on the injection velocity and must be considered as a function of temperature during the analysis as this will significantly affects the combustion characteristics.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In