Full Content is available to subscribers

Subscribe/Learn More  >

Control of Turbulent Combustion Flow Inside a Gas Turbine Combustion Chamber Using Plasma Actuators

[+] Author Affiliations
E. Ghasemi, Soheil Soleimanikutanaei, Cheng-Xian Lin

Florida International University, Miami, FL

Paper No. POWER2015-49499, pp. V001T03A011; 10 pages
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME


In this paper, effects of a standard plasma actuator on non-premixed turbulent reacting flows in a unique gas turbine combustion chamber have been studied numerically. The computational simulation is conducted by employing the Reynolds Averaged Navier-Stokes (RANS) approach. Chemical reaction kinetics has been modeled using the eddy dissipation concept (EDC) model. The numerical simulation has been carried out by Finite Element Methods. High voltage potential between two copper electrodes separated by a dielectric material has been applied which leads to the generation of plasma and an electric field, which creates a body force. It was found that by orienting the plasma force in the desired direction, combustion rate can be accelerated or controlled. The numerical results have been presented through velocity, temperature, and species concentration profiles under different combustion conditions.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In