0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation on Thermal and Kinetic Characteristics During Pyrolysis and Co-Pyrolysis of Recovered Fuels Obtained From Municipal Solid Waste in China

[+] Author Affiliations
Lin Chen, Shuzhong Wang, Wu Zhiqiang, Haiyu Meng, Jun Zhao, Lin Zonghu

Xi’an Jiaotong University, Xi’an, China

Paper No. POWER2015-49257, pp. V001T03A008; 7 pages
doi:10.1115/POWER2015-49257
From:
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME

abstract

Alternative fuels, such as municipal solid waste (MSW) tend to play an increasingly important role in Chinese energy supply. Gasifying fuels derived from MSW have the potential of covering a significant part of the future demand on gasification capacities. However, their pyrolysis behaviour was not clear due to that the reactions during co-pyrolysis of the MSW serval fractions have not yet been fully investigated. In this paper, thermal behavior of pork, polypropylene and their blends were investigated by thermogravimetry under pyrolysis conditions via the non-isothermal thermogravimetric analysis. The pyrolysis and co-pyrolysis kinetics characteristics of the waste samples was investigated at a temperature range of 50 to 1000 °C with the heating rate of rate of 10, 20, 40 °C·min−1 and for particle sizes less than 74 μm. The results indicated that pyrolysis rate of pork was hindered by polypropylene. Negative synergistic effects on mixture decomposition was observed. Weight loss of mixture were lower than that calculated from individual samples for pork and polypropylene. The apparent activation energy were obtained through Kissinger and Ozawa methods for the samples. The results indicated that more energy for blends to be decomposed during co-pyrolysis.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In