Full Content is available to subscribers

Subscribe/Learn More  >

A Computer Program for Working Fluid Selection of Low Temperature Organic Rankine Cycle

[+] Author Affiliations
Muhammad Ansab Ali, Tariq Saeed Khan, Ebrahim Al Hajri

The Petroleum Institute, Abu Dhabi, UAE

Zahid H. Ayub

Isotherm Inc., Arlington, TX

Paper No. POWER2015-49691, pp. V001T01A016; 10 pages
  • ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum
  • ASME 2015 Power Conference
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Power Division
  • ISBN: 978-0-7918-5660-4
  • Copyright © 2015 by ASME


Fossil fuels are continuously depleting while the global energy demand is growing at a fast rate. Additionally, fossil fuels based power plants contribute to environmental pollution. Search for alternate energy resources and use of industrial waste heat for power production are attractive topics of interest these days. One way of enhancing power production and decreasing the environmental impact is by recuperating and utilizing low grade thermal energy. In recent years, research on use of organic Rankine cycle (ORC) has gained popularity as a promising technology for conversion of heat into useful work or electricity. Due to simple structure of ORC system, it can be easily integrated with any energy source like geothermal energy, solar energy and waste heat. A computer program has been developed in engineering equation solver (EES) environment that analyzes and selects appropriate working fluid for organic Rankine cycle design based on available heat sources. For a given heat source, the program compares energy and exergy performance of various working fluids. The program also includes recuperator performance analysis and compares its effectiveness on the overall thermal performance of the Rankine cycle. This program can assist in preliminary design of ORC with respect to best performing refrigerant fluid selection for the given low temperature heat source.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In