0

Full Content is available to subscribers

Subscribe/Learn More  >

The Effects of Subcooling on Quenching of a Vertical Brass Cylinder With Heating Power

[+] Author Affiliations
Yuan-Hong Ho, Ming-Xi Ho, Chin Pan

National Tsing Hua University, Hsinchu, Taiwan

Paper No. NUCLRF2015-49307, pp. V001T04A001; 7 pages
doi:10.1115/NUCLRF2015-49307
From:
  • ASME 2015 Nuclear Forum collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology
  • ASME 2015 Nuclear Forum
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Nuclear Engineering Division
  • ISBN: 978-0-7918-5686-4
  • Copyright © 2015 by ASME

abstract

Film boiling is usually induced while a very hot object contacts with a coolant. Such phenomena will deteriorate the heat transfer and degrade the cooling process. Film boiling is of significant concern for the design of an emergency core cooling system after a hypothetical loss of coolant accident happens in a nuclear power plant. Furthermore, after a nuclear power plant is shut down, the fuel rods will continue to release heat due to the decay of fission products. Moreover, the subcooling of coolant might be changed dramatically during the reflood process. Therefore, it is of significant importance and interest to understand the effect of decay heat and subcooling of coolant on the quenching process of a hot object. This study demonstrates the quenching of a vertical brass cylinder without and with heating power of 105W in deionized water with different subcoolings. The diameter and length of the cylinder is 24 mm and 112 mm, respectively. Six K-Type thermocouples are embedded 2mm below the cylinder surface at different axial locations. The experimental results reveal that, with heating power of 105W, the duration of film boiling becomes much larger than the case without heating power under the same subcooling condition. Besides, the duration of film boiling decreases with increasing subcooling. This study also reveals that the Leidenfrost temperature increases significantly with increasing the subcooling with or without heating power. Significantly, a stable film boiling with approximately constant wall temperature can be sustained in saturated water. This is of significant concern for nuclear safety.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In