Full Content is available to subscribers

Subscribe/Learn More  >

Comparisons of Performances and Liquid Water Distributions Within Bio-Inspired and Single-Serpentine PEM Fuel Cell Channels

[+] Author Affiliations
Bhaskar P. Saripella, Umit O. Koylu, Ming C. Leu

Missouri University of Science and Technology, Rolla, MO

Paper No. FUELCELL2015-49099, pp. V001T06A001; 9 pages
  • ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum
  • ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-5661-1
  • Copyright © 2015 by ASME


Flow field design in Proton Exchange Membrane (PEM) fuel cells is a major area of research for performance improvement. Bio-inspired flow field designs are a relatively recent development in fuel cell technology evolution. These novel designs have potential for performance improvements by effective distribution of reactant gases with better water management capabilities. This work investigates the performance and water distribution in a bio-inspired flow field design, formulated using Murray’s law and mimicking a typical leaf venation pattern, in comparison to a conventional single serpentine design. Experiments were conducted using a transparent fuel cell with copper as the conductive channel and current collector. The results indicated the superior performance of the bio-inspired design with a 30% increase in peak power density in comparison to the single serpentine design. Additionally, the flow regimes based on two-phase flows in micro channels were identified and their effects on fuel cell stability were determined.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In