0

Full Content is available to subscribers

Subscribe/Learn More  >

Needs and Approaches for Novel Characterization of Direct Hybrid Fuel Cell/Gas Turbines

[+] Author Affiliations
David Tucker

National Energy Technology Laboratory, Morgantown, WV

Comas Haynes

Georgia Tech Research Institute, Atlanta, GAOak Ridge National Laboratory, Oak Ridge, TN

Patrick Geoghegan

Oak Ridge National Laboratory, Oak Ridge, TN

Paper No. FUELCELL2015-49232, pp. V001T05A001; 6 pages
doi:10.1115/FUELCELL2015-49232
From:
  • ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum
  • ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-5661-1
  • Copyright © 2015 by ASME

abstract

Solid oxide fuel cell (SOFC)/ gas turbine (GT) hybrid systems possess the capacity for unprecedented performances, such as electric efficiencies nearly twice that of conventional heat engines at variable scale power ratings inclusive of distributed generation. Additionally, these hybrids can have excellent operational flexibility with turndowns possibly as great as 85%. There are, however, developmental needs such as turbomachinery characterization and re-design. A leading example is that of greater propensity to have occurrences of stall-surge given the significantly different operating environment in contrast to conventional heat engines. Additionally, dynamic variation in power generation has to be done with significant a priori insight to avoid thermomechanical threats to cell stack and turbomachinery.

State-of-the-art approaches involving hardware-in-the-loop simulation and, ultimately, additive manufacturing are being pursued to enable such characterization and re-design considerations given variable and dynamic operability requirements. Compressor performance in hybrid systems has been characterized at the United States National Energy Technology Laboratory (NETL), inclusive of a capability of feed forward hardware-in-the-loop simulation of hybrid systems under dynamic conditions and a capability of replacing turbine and compressor components at a relatively low cost. This paper highlights some of the simulation results, and the net result is an approach that addresses hybrid system developmental needs for accommodating generation transients.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In