Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Contact Resistance Measurements of Gas Diffusion Layers in Polymer Electrolyte Fuel Cells

[+] Author Affiliations
Adam S. Hollinger

Penn State Erie, The Behrend College, Erie, PA

Stefan T. Thynell

The Pennsylvania State University, University Park, PA

Paper No. FUELCELL2015-49293, pp. V001T04A003; 5 pages
  • ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum
  • ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-5661-1
  • Copyright © 2015 by ASME


Localized temperature gradients in a polymer electrolyte fuel cell are known to decrease the durability of the polymer membrane. The most important factor in controlling these temperature gradients is the thermal contact resistance at the interface of the gas diffusion layer and the bipolar plate. Here we present thermal contact resistance measurements of carbon paper and carbon cloth gas diffusion layers over a pressure range of 0.7–14.5 MPa. Contact resistances are highly dependent upon the clamping pressure applied to a fuel cell, and in the present work, contact resistances vary from 3.5E−4 to 2.0E−5 m2K/W, decreasing non-linearly over the pressure range for each material tested. The data presented here also shows that the thermal resistance of the sample is negligible in comparison to the thermal contact resistance. Thermal uniformity in a fuel cell is desirable, and the measurements presented here can be used to more accurately predict temperature distribution in a polymer electrolyte fuel cell.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In