0

Full Content is available to subscribers

Subscribe/Learn More  >

Integrated Anaerobic Digester and Fuel Cell Power Generation System for Community Use

[+] Author Affiliations
Ryan Falkenstein-Smith, Kang Wang, Ryan Milcarek, Jeongmin Ahn

Syracuse University, Syracuse, NY

Paper No. FUELCELL2015-49436, pp. V001T03A004; 5 pages
doi:10.1115/FUELCELL2015-49436
From:
  • ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum
  • ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology
  • San Diego, California, USA, June 28–July 2, 2015
  • Conference Sponsors: Advanced Energy Systems Division
  • ISBN: 978-0-7918-5661-1
  • Copyright © 2015 by ASME

abstract

New York State is expected to experience future population growth that is increasingly concentrated in urban areas, where there is already a heavy burden on the existing energy, water and waste management infrastructure. To meet aggressive environmental standards (such as that established by the State’s “80x50” goal), future electrical power capacity must produce substantially fewer greenhouse gas emissions than currently generated by coal- or natural gas-fired power plants. Currently, biogas is combusted to produce heat and electricity via an internal combustion engine generator set. A conventional internal combustion engine generator set is 22–45 % efficient in converting methane to electricity, thus wasting 65–78 % of the biogas energy content unless the lower temperature heat can be recovered. Fuel cells, on the other hand, are 40–60 % efficient in converting methane to electrical energy, and 80–90 % efficient for cogeneration if heat (> 400 °C) is recovered and utilized for heating and cooling in the community power system. This current research studies the feasibility of a community biomass-to-electricity power system which offers significant environmental, economic and resilience improvements over centrally-generated energy, with the additional benefit of reducing or eliminating disposal costs associated with landfills and publicly-owned treatment works (POTWs). Flame Fuel Cell (FFC) performance was investigated while modifying biogas content and fuel flow rate. A maximum power density peak at 748 mWcm-2 and an OCV of 0.856 V was achieved. It should be noted that the performance obtained with the model biofuel is comparable to the performances of direct methane fueled DC-SOFC and SC-SOFC. The common trends also concluded an acceptable range for optimal performance. Although the methane to CO2 ratios of 3:7 and 2:8 produced power, they are not the strongest ratios to have optimal performance, meaning that operation should stay between the 6:4/4:6 ratio range. Lastly, the amount of air added to the biogas mixture is crucial to achieving the optimal performance of the cell. The data obtained confirmed the feasibility of a biofuel driven fuel cell CHP device capable of achieving higher efficiency than existing technologies. The significant power output produced from the sustainable biogas composition is competitive with current hydrocarbon fuel sources. This idea can be expanded for a community waste management infrastructure.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In