0

Full Content is available to subscribers

Subscribe/Learn More  >

Rheological Properties of Oil Based Drilling Fluids and Base Oils

[+] Author Affiliations
Velaug Myrseth Oltedal

SINTEF Petroleum Research, Bergen, Norway

Benjamin Werner

Norwegian University of Science and Technology, Trondheim, Norway

Bjørnar Lund, Jan David Ytrehus

SINTEF Petroleum Research, Trondheim, Norway

Arild Saasen

Det Norske, Oslo, NorwayUniversity of Stavanger, Stavanger, Norway

Paper No. OMAE2015-41911, pp. V010T11A042; 8 pages
doi:10.1115/OMAE2015-41911
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 10: Petroleum Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5658-1
  • Copyright © 2015 by ASME

abstract

Drilling fluids for oil wells must meet a number of requirements, including maintaining formation integrity, lubricating the drill string, and transporting cuttings to the surface. In order to satisfy these needs, drilling fluids have become increasingly complex and expensive. To ensure safe and efficient drilling, it is vital for the drilling operator to be able to make a qualified choice of fluid appropriate for each individual well.

API/ISO standards specify a set of tests for characterization of drilling fluids. However, fluids that are tested to have equal properties according to these standards are still observed to perform significantly different when used in the field. The aim of the full project is to provide a thorough comparison of drilling fluids in particular with respect to hole cleaning performance, in light of the issues presented above. As part of this investigation we here present results for two oil based drilling fluids, as well as for the corresponding base oil. The drilling fluids differ in composition by varying fraction of base oil, and thus density and water content.

The fluids have been tested according to the API standard, and further, viscoelastic properties have been examined using an Anton Paar rheometer. The rheological test campaign includes determination of the linear viscoelastic range (LVER), viscosity and yield point, thixotropic time test, and temperature dependence of rheological parameters.

Further, it is demonstrated how the rheological data may be used to interpret data from ongoing full scale flow loop experiments with the same fluids. In a more general context, the rheological test campaign of the drilling fluids is expected to make a crucial contribution for the petroleum industry in explaining observed differences in hole cleaning properties beyond what todays API/ISO industry standard provides.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In