0

Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of Pressure Fluctuations in a Wellbore While Tripping

[+] Author Affiliations
Vladimir Tarasevich, Evgeny Podryabinkin, Oleg Bocharov

Baker Hughes, Novosibirsk, Russia

Roland May

Baker Hughes, Celle, Germany

Paper No. OMAE2015-41370, pp. V010T11A035; 9 pages
doi:10.1115/OMAE2015-41370
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 10: Petroleum Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5658-1
  • Copyright © 2015 by ASME

abstract

Assembling or dismantling drillstring sections during tripping operations results in a periodically accelerated or decelerated motion of the drillstring in the borehole. While running in or pulling out of hole the drillstring induces a flow of displaced fluid and a pressure change in the borehole. These pressure changes can be divided into two components: First, the “steady” pressure change associated with the mud viscous friction; and second, the pressure fluctuations caused by induced acceleration of the drilling fluid. Pressure surges are especially dangerous for the uncased well sections and at the bottom of the well, because they can damage and destroy the wellbore. The accurate prediction of pressure fluctuations is significant for wells where the pressure must be maintained within a narrow range to enable safe drilling and completion of the well. Sudden pressure changes in such wells may lead to the so-called water-hammer effect that can be observed in wells when pump operation modes change or when the string is accelerated. A large-scale water-hammer effect may damage the uncased section of a well, leading to fractures or formation fluid inflow.

The objective of this paper is to estimate the magnitude of the pressure surges caused by accelerated movement of the drillstring. A mathematical model was formulated to describe the unsteady behavior of flow rate and pressure change along the well. The model involves a one-dimensional system of equations, which are a modification of the equations for hydraulic shocks in the annulus, and the cylindrical part of a well.

When frictional losses are neglected, it is possible to derive an exact analytical solution of the problem. This analytical solution was used to estimate the maximum and minimum pressure in the borehole.

When combined with the methods for frictional pressure losses, the suggested method can predict the pressure change in a wellbore while tripping. Newtonian and power law fluids were considered for the parameter study.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In