Full Content is available to subscribers

Subscribe/Learn More  >

Coupled Heat and Mass Transfer CFD Model for Methane Hydrate

[+] Author Affiliations
Eugenio Turco Neto, M. A. Rahman, Syed Imtiaz, Thiago dos Santos Pereira, Fernanda Soares de Sousa

Memorial University of Newfoundland, St. John’s, NL, Canada

Paper No. OMAE2015-42258, pp. V010T11A033; 6 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 10: Petroleum Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5658-1
  • Copyright © 2015 by ASME


The gas hydrates problem has been growing in offshore deep water condition where due to low temperature and high pressure hydrate formation becomes more favorable. Several studies have been done to predict the influence of gas hydrate formation in natural gas flow pipeline. However, the effects of multiphase hydrodynamic properties on hydrate formation are missing in these studies. The use of CFD to simulate gas hydrate formation can overcome this gap. In this study a computational fluid dynamics (CFD) model has been developed for mass, heat and momentum transfer for better understanding natural gas hydrate formation and its migration into the pipelines using ANSYS CFX-14. The problem considered in this study is a three-dimensional multiphase-flow model based on Simon Lo (2003) study, which considered the oil-dominant flow in a pipeline with hydrate formation around water droplets dispersed into the oil phase. The results obtained in this study will be useful in designing a multiphase flow metering and a pump to overcome the pressure drop caused by hydrate formation in multiphase petroleum production.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In