Full Content is available to subscribers

Subscribe/Learn More  >

Large Scale Experimental Storm Impact on Nourished Beach Using Cobble-Gravel-Sand Mix

[+] Author Affiliations
Jannette B. Frandsen, Régis Xhardé, Francis Bérubé, Olivier Gauvin Tremblay

Institut National de la Recherche Scientifique University of Québec, Québec, QC, Canada

Paper No. OMAE2015-42201, pp. V007T06A033; 10 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 7: Ocean Engineering
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5655-0
  • Copyright © 2015 by ASME


We have investigated beach stability against storm waves. The studies are done in relation to eroded beaches. We are testing a cobble-sand-gravel mixture as a means of using a soft method for coastal protection on nourished beaches. A physical model of an existing beach was built at scale 1:3. The cobble/sand grain size is in 1:3 scale while the gravel is 1:1.5 scale. The large scale experimental flume tests have been set-up in the new outdoor 120 m long flume in Québec city, Canada. The tests were conducted over two test seasons (2013–14). While we in the first test season studied impact on the beach due to incoming regular plunging breakers, the last season contained tests with incoming irregular plunging breakers on the beach with/without tidal variation.

Herein, we primarily report on the wave impact due to irregular plunging breakers on constant and tidal varying water depths. The wave-tide interactions were conducted with a tidal range of 1 m in relation to beaches with steep beach slopes (1:10, 1:5, 1:1). The model inlet significant wave height was 1.1–1.5 m corresponding to equivalent prototype waves in the range of max. wave heights of 6–8.5 m with dominant periods of 12 s in water depth of about 15 m and tidal range of 3 m.

In general, the Equilibrium Beach Profile (EBP) was reached after exposure to about 10,000 plunging breakers or the equivalent of five storms assuming each lasting 3 hours. A cobble berm was formed rapidly on the top of the beach, protecting the backshore against wave action and flooding while finer sediment was transported “offshore”. Beach width reduction was observed when the initial slope of the beach fill material exceeded the equilibrium beach slope. Sediment grain size sorting along the beach profile is discussed and compared to existing beach models, and EBP was compared to several EBP equations.

From a coastal management perspective, in terms of durability, the mixed cobble-sand-gravel material is showing promise as a material to use for coastal protection. It is highly absorbent and the beach tends to maintain its shape over long time when exposed to several storms. However, storm surges in the combination with high tides can results in excessive run-up and potential flood risks. The stabilized beach typically had slopes of 1:7–1:9 independent of the initial slope. We found that irregular seas result in a less pronounced trough in the beach profile in the swash zone than incoming regular plunging breakers. The tidal interaction was further advantageous, naturally shifting the material back and forth. However, other materials and other sensitivity studies are necessary in order to provide firm conclusions about the usage of the cobble-gravel-sand mixture for coastal protection.

Copyright © 2015 by ASME
Topics: Sands , Gravel , Storms



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In