Full Content is available to subscribers

Subscribe/Learn More  >

Hydrodynamic Evaluation of a Generic Sail Used in an Innovative Prawn-Trawl Otter Board

[+] Author Affiliations
Cheslav Balash

University of Tasmania, Launceston, Australia

David Sterling

Sterling Trawl Gear Services, Brisbane, Australia

Matt Broadhurst

NSW Department of Primary Industries, Fisheries Conservation Technology Unit, Coffs Harbour, Australia

Arno Dubois

Delft University of Technology Ship Hydrodynamics & Structures, Delft, Netherlands

Morgan Behrel

ENSTA Bretagne, Brest, France

Paper No. OMAE2015-41335, pp. V006T05A003; 6 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 6: Ocean Space Utilization
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5654-3
  • Copyright © 2015 by ASME


In prawn-trawling operations, otter boards provide the horizontal force required to maintain net openings, and are typically low aspect ratio (∼0.5) flat plates operating on the seabed at high angles of attack (AOA; 35–40°). Such characteristics cause otter boards to account for up to 30% of the total trawling resistance, including that from the vessel. A recent innovation is the batwing otter board, which is designed to spread trawls with substantially less towing resistance and benthic impacts. A key design feature is the use of a sail, instead of a flat plate, as the hydrodynamic foil. The superior drag and benthic performance of the batwing is achieved by (i) successful operation at an AOA of ∼20° and (ii) having the heavy sea floor contact shoe in line with the direction of tow. This study investigated the hydrodynamic characteristics of a generic sail by varying its twist and camber, to identify optimal settings for maximum spreading efficiency and stability. Loads in six degrees of freedom were measured at AOAs between 0 and 40° in a flume tank at a constant flow velocity, and with five combinations of twist and camber. The results showed that for the studied sail, the design AOA (20°) provides a suitable compromise between greater efficiency (occurring at lower AOAs) and greater effectiveness (occurring at higher AOAs). At optimum settings (20°, medium camber and twist), a lift-to-drag ratio >3 was achieved, which is ∼3 times more than that of contemporary prawn-trawling otter boards. Such a result implies relative drag reductions of 10–20% for trawling systems, depending on the rig configuration.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In