Full Content is available to subscribers

Subscribe/Learn More  >

Investigation Into Stability and Accuracy in Predicting Slender Bodies’ Hydroelasticity Using Loose Coupling Methods

[+] Author Affiliations
Leixin Ma, Shixiao Fu, Ke Hu, Qian Shi, Runpei Li

Shanghai Jiao Tong University, Shanghai, China

Paper No. OMAE2015-41136, pp. V006T05A001; 7 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 6: Ocean Space Utilization
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5654-3
  • Copyright © 2015 by ASME


Problems concerning fluid-structure-interaction are often encountered in aquaculture engineering. For a moving slender structure like fishing net or floater in currents and waves, modified Morison Equation is a widely employed formula to estimate its hydrodynamic loads. The hydrodynamic forces are closely dependent on the structures’ velocity and acceleration, and quadratic relative velocity in the equation even adds nonlinearity in the forces. To study the hydroelastic response, two time-saving loosely coupling methods, calculating the hydrodynamic forces based on the structure’s response in the previous time step without iteration, are proposed in this paper. The loose coupling methods were proved to affect the traditional stability criteria for time integration. Based on the two loose coupling methods, the stability and accuracy of a slender beam’s hydroelasticity undergoing large deformation were studied. The calculated responses were compared against strong coupling results. It was found that if loose coupling is assumed in added mass force, unconditional instability is likely to occur. On the other hand, the accuracy of numerical results can be improved with smaller time increments set if loose coupling is only assumed in the quadratic relative drag force.

Copyright © 2015 by ASME
Topics: Stability



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In