0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Buoyancy Modules Geometry on Hydro-Elastic and Hydrodynamic Performance of a Steep Wave Riser in Steady Current

[+] Author Affiliations
Samuel J. Calvert, Cheslav Balash, Shuhong Chai

University of Tasmania, Launceton, Australia

Cecile Izarn, Henri Morand

Technip Oceania, Perth, Australia

Paper No. OMAE2015-41336, pp. V05AT04A037; 11 pages
doi:10.1115/OMAE2015-41336
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5A: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5651-2
  • Copyright © 2015 by ASME

abstract

Analysis of the hydrodynamic properties and response of flexible risers in various configurations is paramount to understanding their operative performance. Buoyancy modules play an integral role in providing compliance to flexible riser systems in wave configuration. This study utilised both model testing and numerical simulations to quantify the impact of discretised and smeared buoyancy module sections on the performance of a flexible riser in shallow water steep wave configuration under steady current loading. Model testing was facilitated in the Australian Maritime College’s Circulating Water Channel by a 1:15 scale 8″ flexible riser constructed from silicon hose and foam. Variances in the model’s buoyancy module section and system offset were tested at different flow velocities to estimate the effect on in-line drag and top tension, and the change in curvature radius experienced by the riser. The tested systems were also modelled in dynamic analysis software for comparative purposes, where industry recommended practices were employed to specify drag coefficients. Numerical simulations exhibited an appreciably higher in-line drag compared to model testing results at higher flow velocities. Comparison of curvature radius results demonstrated close agreement at lower flow velocities, with numerical simulations exhibiting increased deformations due to the higher in-line drag estimated at higher flow velocities. This discrepancy might be partially attributed to an overestimation of drag coefficients defined within industry recommended practices. The findings from this study have shown the significance of utilising scale model testing to quantify the hydrodynamic responses of a flexible riser, and facilitate a basis for further work which might provide additional insight into the discrepancies between analytical modelling and scale model tests.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In