0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Thermosyphon Protection for Frost Heave

[+] Author Affiliations
Basel Abdalla, Chengye Fan

Wood Group Kenny, Houston, TX

Colin McKinnon

Wood Group Kenny, Staines, UK

Vincent Gaffard

TOTAL, Paris, France

Paper No. OMAE2015-42326, pp. V05AT04A025; 6 pages
doi:10.1115/OMAE2015-42326
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5A: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5651-2
  • Copyright © 2015 by ASME

abstract

Thaw subsidence and frost heave are two different hazards to pipelines in arctic regions. The former is due to the thawing of permafrost induced by a warm pipeline, while the latter is resulted from a cold buried pipeline that causes ice lens growth upon freezing in the direction of heat loss. Some pipelines may be operated in a wide temperature range and thus subjected to both types of threats.

Two-phase closed thermosyphons have been employed extensively in Arctic projects to protect the permafrost from thawing. The thermosyphons’ response as a “thermo-diode” is the key to this technology. This paper presents a finite element analysis (FEA) based feasibility study for using thermosyphons with pipelines in arctic regions to reduce the potential for frost heave. There are two major challenges in the numerical simulation. One is the efficient modeling of a thermosyphons which works as a heat pump in winter and stops working in summer. This study proposes an anisotropic conduction model that simplifies the thermal-fluid processes within the thermosyphon without overwhelming computational cost. The other challenge is the frost heave modeling, which was recently achieved based on the framework of the porosity rate function. New developments involved in this paper include the extended application to permafrost and transient temperature boundary conditions.

The outcome of this work proves the value of using thermosyphons with pipelines that transfer both cold product. The method introduced here can also be used to optimize the design of new infrastructure and pipelines in permafrost, as well as to assess how thermosyphons work as a mitigation method in existing projects that are affected by frost heave.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In