0

Full Content is available to subscribers

Subscribe/Learn More  >

Multidisciplinary Optimization Design for Section Layout of Complex Umbilical Cables Based on Intelligent Algorithm

[+] Author Affiliations
Zhixun Yang, Jun Yan, Guojun Ma, Qingzhen Lu, Minggang Tang, Jinlong Chen, Qianjin Yue

Dalian University of Technology, Dalian, China

Paper No. OMAE2015-41492, pp. V05AT04A013; 9 pages
doi:10.1115/OMAE2015-41492
From:
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5A: Pipeline and Riser Technology
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5651-2
  • Copyright © 2015 by ASME

abstract

Umbilical which links the top floater and the subsea devices provides control functions through electrical cables and hydraulic remote transmission. They are treated as the “lifeline” of the subsea production system for offshore oil and gas exploitation. During operation, umbilical needs to undertake self-weight and periodical load due to the ocean environment. Meanwhile, the heat during power transmission in electric cable is released to the umbilical body, which influences the mechanical properties and optical transmission in the cable. However, there are a number of components and many kinds of sectional arrangement for the umbilical. So the sectional design with multiple components needs to be solved as a multidisciplinary optimization problem. From the mechanical point of view, the umbilical structure should be designed with more compacted and symmetric layout to obtain even probability of resistance to loads and reduce structural stress to improve its fatigue performance. Concerning thermal effect, these units should be arranged to dissipate the heat easily to avoid the influence on the functional and structural components. In this paper, compactedness, symmetry and temperature distribution are quantified through introducing corresponding indices. Then multidisciplinary optimization framework is established. Particle Swarm Optimization (PSO) intelligent algorithm is adopted to carry out the optimization to obtain the optimal solution, which is far superior to the initial design. The optimization design strategy is proved to be effective and efficient by some numerical examples, which provides reference for design of umbilical cables.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In