Full Content is available to subscribers

Subscribe/Learn More  >

An Extension of the BWH Instability Criterion: Numerical Study

[+] Author Affiliations
Martin Storheim, Odd Sture Hopperstad, Jørgen Amdahl

Norwegian University of Science and Technology, Trondheim, Norway

Hagbart Alsos

Reinertsen AS, Trondheim, Norway

Paper No. OMAE2015-41178, pp. V003T02A002; 10 pages
  • ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Structures, Safety and Reliability
  • St. John’s, Newfoundland, Canada, May 31–June 5, 2015
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5649-9
  • Copyright © 2015 by ASME


The BWH criterion for simulating instability prior to necking in sheet metal has been extended with a post-necking damage model, in which the effect of the local neck inside a large element is accounted for with low mesh dependency. The model is incorporated in the explicit FE code LS-DYNA. The material model can be calibrated from a single uniaxial tensile test, and gives good prediction of rupture for a range of stress triaxialities.

This paper investigates the robustness of the criterion through numerical simulations of different experiments, from forming limit tests to large impact experiments on stiffened panel structures. A full-scale collision is simulated with two different mesh-sizes to investigate the robustness of the fracture prediction.

The validation cases are simulated with good accuracy considering the coarse meshes involved. Based on the validation, the post-necking extension of the BWH criterion can readily be used for structural design of offshore structures in order to assess the technical safety level of the structure against collisions in all phases of the design process. The method has a good ratio of accuracy vs. computational cost, and is less prone to user-errors as the calibration is simple and the mesh-scaling is automated.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In