0

Full Content is available to subscribers

Subscribe/Learn More  >

Minimum Quantity Lubrication (MQL) Using Vegetable Oil With Nano-Platelet Solid Lubricant in Milling Titanium Alloy

[+] Author Affiliations
Trung Nguyen, Dinh Nguyen, Pete Howes, Patrick Kwon

Michigan State University, East Lansing, MI

Kyung-Hee Park

Korea Institute of Industrial Technology, Cheonan-si, Chungcheongnam-do, Korea

Paper No. MSEC2015-9466, pp. V002T05A014; 10 pages
doi:10.1115/MSEC2015-9466
From:
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5683-3
  • Copyright © 2015 by ASME

abstract

Improving the machinability of titanium (Ti) alloys remains unresolved for manufacturing industries because excessive tool wear and catastrophic tool failures lead to shortened tool life and low productivity with any available cutting tool system. Besides optimizing the substrate and/or coating materials for cutting tools, improving the cooling and lubricating conditions is one of the ways to improve the machinability of Ti alloys. In this paper, we explore the possibility of using a nano-platelet, lamellar-type solid lubricant of graphite Exfoliated graphite nano-platelets (xGnP®) grade C750 (or xGnP750) in Minimum Quantity Lubrication (MQL) machining of Ti-6Al-4V (Ti64). Due to the lamellar or layered crystal structure, each layer easily slides against adjacent layers to provide the lubricity when introduced at the tool/work material interface. Although the nano-platelets have a nano-thickness, they have a micro-sized diameter, which prevents the nano-platelets from penetrating through human skin and breathing through nose. This makes the great advantage in this approach compared to other nano-enhanced MQL processes. The milling experiment shows that the nano-platelets present in the MQL oil decreased flank wear and improved the tool life compared to traditional MQL with pure oil as well as dry machining. The presence of nano-platelets reduces the micro chipping and tool fracture caused by the effect of impact in interrupted machining.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In