Full Content is available to subscribers

Subscribe/Learn More  >

Layerwise Automated Visual Inspection in Laser Powder-Bed Additive Manufacturing

[+] Author Affiliations
Masoumeh Aminzadeh, Thomas Kurfess

Georgia Institute of Technology, Atlanta, GA

Paper No. MSEC2015-9393, pp. V002T04A011; 9 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5683-3
  • Copyright © 2015 by ASME


Laser powder-bed fusion (L-PBF) is an additive manufacturing (AM) process that enables fabrication of functional metal parts with near-net-shape geometries. The drawback to L-PBF is its lack of precision as well as the formation of defects due to process randomness and irregularities associated with laser powder fusion. Over the past two decades much research has been conducted to control laser powder fusion in order to provide parts of higher quality.

This paper addresses online quality monitoring in AM by in-situ automated visual inspection of each layer which is aimed to geometric objects and defects from high-resolution visual images. A scheme for online defect detection system is presented that consists of three levels of processing: low-level, intermediate-level, and high-level processing. Each level is described and appropriately divided to several stages, when insightful. Techniques that are feasible in each level for successful defect detection and classification are identified and described. Requirements and specifications of the measurement data to achieve desired performance of the online defect detection system are stated.

Image processing algorithms are developed for first level of processing and implemented for segmentation of geometric objects. Due to the large variation of intensities within the powder region and fused regions, and also the non-multi-modal nature of the image, the basic segmentation algorithms such as thresholding do not produce appropriate results. In this work, morphological operations are effectively designed and implemented following thresholding to achieve the desired object segmentation. Examples of implementations are given. The paper provides the results of object segmentation which is the initial stage of development of an in-situ automated visual inspection for L-PBF process.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In