Full Content is available to subscribers

Subscribe/Learn More  >

Improved Bi-Level Mathematical Programming and Heuristics for the Cellular Manufacturing Facility Layout Problem

[+] Author Affiliations
Maral Zafar Allahyari, Ahmed Azab

University of Windsor, Windsor, ON, Canada

Paper No. MSEC2015-9273, pp. V002T04A001; 10 pages
  • ASME 2015 International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Charlotte, North Carolina, USA, June 8–12, 2015
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5683-3
  • Copyright © 2015 by ASME


A good layout plan results in improvements in machine utilization, setup time, and reduction in work-in-process inventory and material handling cost. Facility layout problem (FLP) for CMS includes both intercellular- and intracellular-layout. Most of the literature takes a discrete approach and rarely considers operations sequence and part demand. In this paper, a novel bi-level heuristic and mixed-integer non-linear programming continuous model for the layout design of cellular manufacturing are developed. Machine tools and manufacturing cells layout are determined sequentially by solving a leader and follower problem, respectively. Facilities are assumed unequal sizes. Both overlap elimination and aisle constraint modeling have been considered. The model is nonlinear; problem is NP-hard. Hence, only small instances of the problem can be solved using the exact linearized model. The developed heuristic is used to solve large instances of the problem. A real case study from the metal cutting inserts industry, where multiple families of inserts have been formed, each with its distinguished master plan, is presented.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In